Part Number Hot Search : 
TXB1GG T1500 CY372 TC74VH MAX25 U643B05 RODUC GW30N
Product Description
Full Text Search
 

To Download MAX1932EVKIT Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 19-2650; Rev 0; 10/02
MAX1932 Evaluation Kit
General Description
The MAX1932 evaluation kit (EV kit) is a fully assembled and tested surface-mount circuit board. The EV kit contains a MAX1932 step-up switching regulator that includes an 8-bit DAC with an SPITM-compatible serial interface. The output of the step-up switching regulator is configured for a range of 40V to 90V and can provide up to 2mA. The EV kit is powered from a DC supply providing 4.5V to 5.5V. The EV kit can be reconfigured for an input voltage down to 3V. The SPI-compatible serial interface can be connected to an IBM-compatible PC parallel port for evaluation. Windows(R) 95/98/2000-compatible software provides a user-friendly interface to demonstrate the features of the MAX1932 IC. The program is menu driven and offers a graphics interface with control buttons. The MAX1932 EV kit features current-limit protection for the output. The MAX1932 QFN package and small external components permit the circuit area to be less than 0.6in 0.9in.
SPI is a trademark of Motorola, Inc. Windows is a registered trademark of Microsoft Corp.
Features
4.5V to 5.5V Input Range Output Voltage Ranges from 40V to 90V Output Ranges are Adjustable with Resistors Overcurrent Protection SPI-Compatible Serial Interface Menu-Driven Software Windows 95/98/2000-Compatible Software Reconfigurable for Input Voltages Down to 3V (Refer to the IC Data Sheet) Surface-Mount Components Fully Assembled and Tested
Evaluates: MAX1932
Ordering Information
PART MAX1932EVKIT TEMP RANGE 0C to +70C IC PACKAGE 12 QFN (4mm 4mm)
Component List
DESIGNATION QTY C1, C6 2 DESCRIPTION 1F 10%, 6.3V X5R ceramic capacitors (0603) TDK C1608X5R0J105K 0.047F 10%, 100V X7R ceramic capacitor (0805) TDK C2012X7R2A473K 0.1F 10%, 100V X7R ceramic capacitor (1206) TDK C3216X7R2A104K 0.22F 10%, 10V X5R ceramic capacitor (0603) TDK C1608X5R1A224K 0.1F 10%, 16V X7R ceramic capacitor (0603) TDK C1608X7R1C104K 150mA, 100V Schottky barrier diode SOD123 Diodes Inc. BAT46W 200mA, 25V Schottky diodes SOT23 Fairchild BAT54C DB-25 male right-angle connector 5-pin header 2-pin headers DESIGNATION QTY L1 N1 R1 R2 R3, R9, R10 R5 R6 R7 R8 R11 U1 U2 None None 1 1 1 1 3 1 1 1 1 0 1 1 3 1 DESCRIPTION 100H, 170mA inductor Sumida CMD4D13-101MC 170mA, 100V N-channel MOSFET SOT23 Fairchild BSS123 806 1% resistor (0805) 91k 5% resistor (0805) 1M 5% resistors (0603) 1M 1% resistor (0805) 24.9k 1% resistor (0805) 20k 5% resistor (0603) 32.4k 1% resistor (0805) Not installed, resistor (0603) MAX1932ETC 12-lead QFN 4mm 4mm MAX1841EUB 10-pin MAX Shunts (JU2, JU3, JU4) MAX1932 PC board
C2
1
C3
1 1
C4
C7
1
D1 D2, D3 J1 J2 JU2, JU3, JU4
1 2 1 1 3
________________________________________________________________ Maxim Integrated Products
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.
MAX1932 Evaluation Kit Evaluates: MAX1932
Component Suppliers
SUPPLIER Diodes Inc. Fairchild Semiconductor Sumida USA TDK PHONE 805-4464800 888-522-5372 847-545-6700 847-803-6100 FAX 805-381-3899 -- 847-545-6720 847-390-4405 WEBSITE www.diodes.com www.fairchildsemi.com www.sumida.com www.component.tdk.com
Note: Please indicate that you are using the MAX1932 when contacting these component suppliers.
Quick Start
Required Equipment
The following equipment is required: * MAX1932 EV kit * 5V, 500mA DC power supply * One voltmeter * (Optional) Windows 95/98/2000 computer with a spare parallel (printer) port * (Optional) 25-pin I/O extension cable
Procedure with a Computer
Do not turn on the power supply until all connections are completed: 1) Install shunts on jumpers JU2, JU3, and JU4. 2) With the power off, connect the 5V DC power supply to the MAX1932 EV kit. 3) Connect the 25-pin I/O extension cable from the computer's parallel port to the MAX1932 EV kit board. The EV kit software uses a loopback connection to confirm that the correct port has been selected. 4) Install the evaluation software by running the INSTALL.EXE program on the floppy disk. The program files are copied and icons are created for them in the Windows Start menu. 5) Turn on the power supply. Verify that V OUT is approximately 40V. 6) Start the MAX1932 program by opening its icon in the Start menu. 7) Click on SPI 3-Wire Parallel Port Diagnostic (Figure 1). 8) Click on Bit-Banging Serial Interface. 9) Enter 0x01 into "Data bytes to be written" and click on Send Now (Figure 2). 10) Verify that the voltage at the VOUT pad is approximately 90V.
Figure 1. MAX1932 Evaluation Software's Main Window to Access the SPI 3-Wire Parallel Port Diagnostic Utility
11) Enter 0xFF into the "Data bytes to be written" box and click on Send Now. 12) Verify that the voltage at the VOUT pad is approximately 40V. 13) Header J2 is provided to monitor the parallel port pins supplying the CLK_P, CS_P, DIN_P (5V signals), and loopback signal. The CS, SCLK, and DIN pads on the EV kit's bottom edge are VCC levelshifted signals from the MAX1841 translator. Both signal locations can be used for monitoring. For instructions on selecting the feedback resistors for other output voltages, see the Output Voltage Range section.
Procedure without a Computer
Do not turn on the power supply until all connections are completed: 1) Remove shunts on jumpers JU2, JU3, and JU4. 2) With the power off, connect the 5V DC power supply to the MAX1932 EV kit. 3) Turn on the power supply. Verify that V OUT is approximately 40V.
2
_______________________________________________________________________________________
MAX1932 Evaluation Kit
translator's parallel port side is powered by the parallel port's data pins 6, 7, 8, and 9, diodes D2/D3, and capacitor C6, which provides approximately 5V to the translator's input. The power supply connected to V CC provides power to the level translator's output. A 5-pin header (J2) is provided for monitoring the 5V CLK_P, CS_P, DIN_P nonlevel-translated and loopback signals coming from the parallel port cable. The EV kit can be reconfigured for stand-alone operation and connected to an external microcontroller for evaluation. PC board pads are provided for interfacing or monitoring the CS, SCLK, and DIN level-translated pins of the MAX1932 IC.
Evaluates: MAX1932
Output Voltage Range
Step-Up Switching Regulator Output Range
The MAX1932 EV kit's step-up switching regulator output range is set from 40V to 90V by feedback resistors R5, R6, and R8. To generate output voltage ranges other than 40V to 90V (4.5V to 15V, 4.5V to 45V, or 20V to 60V), select different external voltage-divider resistors (R5, R6, and R8). Refer to the Output and DAC Adjustment Range section in the MAX1932 data sheet for instruction on selecting resistors.
Figure 2. Parallel Port Diagnostic Window's Bit-Banging Serial Interface Tab
Jumper Selection
Stand-Alone Configuration
The MAX1932 EV kit features four jumpers (JU1-JU4) to reconfigure the EV kit for stand-alone operation mode or PC/software control mode. Tables 1 and 2 list the options for the desired evaluation mode. Note: All jumpers must be configured for only one mode at a time. A suitable voltage must be selected for standalone mode. Configure all jumpers for either standalone or PC/software control mode.
Detailed Description
The MAX1932 EV kit contains a step-up switching regulator that includes an 8-bit DAC with an SPI-compatible serial interface. The output of the EV kit has two settings: the range voltage setting and a specific voltage setting within the range. As configured, the step-up switching regulator can generate an output range of 40V to 90V and provide up to 2mA of current to the output with 4.75V input. The step-up switching-regulator output voltage can be reconfigured to ranges of 4.5V to 15V, 4.5V to 45V, and 20V to 60V with proper resistor selection (see the Output Voltage Range section). The voltage setting within the range is set by the 8-bit DAC that receives input data from the SPI-compatible interface. The EV kit connects to a compatible PC parallel port and uses the port to control the EV kit. The EV kit's SPI signals are connected to a MAX1841 level translator (U2). The translator level shifts the computer's parallel port logic 5V signals to the EV kit's logic VCC voltage level chosen by the user. The translator can function with voltages down to 2.7V. The level
Detailed Description of Software
The MAX1932 EV kit software's main window has a button to start the SPI 3-wire parallel port diagnostic utility used for bit-banging data into the MAX1932. Click on SPI 3-Wire Parallel Port Diagnostic to start the utility.
SPI/3-Wire Diagnostic
The SPI/3-wire diagnostic screen allows you to send SPI or 3-wire commands, or manipulate the parallel port pins directly. Each of the 25 pins is represented by a checkbox. A checkmark means that the corresponding pin is at a logic-high level. Unused and grounded pins are gray.
_______________________________________________________________________________________________________
3
MAX1932 Evaluation Kit Evaluates: MAX1932
Table 1. Stand-Alone Mode
JUMPER JU1 JU2 JU3 JU4 SHUNT Cut open Not installed Not installed Not installed JUMPER FUNCTION U2 level translator VCC pin isolated U2 level translator SCLK signal isolated from EV kit U2 level translator CS signal isolated from EV kit U2 level translator DIN signal isolated from EV kit EV KIT MODE U2 power disconnected Stand-alone, external controller connected to SCLK pad Stand-alone, external controller connected to CS pad Stand-alone, external controller connected to DIN pad
Table 2. PC/Software Control Mode
JUMPER JU1 JU2 JU3 JU4 SHUNT Shorted Installed Installed Installed JUMPER FUNCTION U2 level translator powered from VCC rail U2 level translator provides SCLK signal U2 level translator provides CS signal U2 level translator provides DIN signal EV KIT MODE U2 power connected PC/software control through parallel port PC/software control through parallel port PC/software control through parallel port
The bit-banging SPI diagnostic utility transmits data using synchronous serial format (similar to Motorola's 68HC11 SPI interface). The SPI interface sends and receives data simultaneously on separate pins. Parallel port pin 2 drives the CLK_P, pin 3 drives CS_P, and pin 4 drives DIN_P. The data to be sent is 8-bit data represented by a twodigit hexadecimal DAC code. The DAC code ranges from 0x01 to 0xFF. The output is at the higher limit, 90V, when the DAC code is 0x01, and at the lower limit, 40V, when the DAC code is 0xFF. The DAC code is entered in the "Data bytes to be written" box and transmitted by clicking on Send Now.
Troubleshooting
Problem: Cannot find the MAX1932 EV kit parallel port connection. Ensure that the I/O extension cable is connected to a parallel port and not to a SCSI or other type of port. Verify that the supplied LPTCON.VXD is in the same directory as MAX1932.EXE. If a local printer driver is installed, temporarily disable it. The software does not work if the program icon is dragged onto the Windows desktop.
4
_______________________________________________________________________________________
MAX1932 Evaluation Kit Evaluates: MAX1932
R1 806 1% C3 0.1F 100V GND 3 3 VIN CS R3 1M 12 CS CL GATE 10 1 N1 2
VIN VIN C1 1F 6.3V
L1 100H
D1 C2 0.047F 100V
VOUT
PGND
11 VIN
R2 91k
CL
U1 MAX1932
CS
CS+ CS-
4 5 R6 24.9k 1% R5 1M 1%
SCLK
1 R9 1M SCLK
SCLK DACOUT FB
6 7 R7 20k
DIN
2 R10 1M
COMP DIN GND 9
8
R8 32.4k 1% C4 0.22F R11 SHORT (PC TRACE) THERM
GND
GND
DIN
Figure 3. MAX1932 EV Kit Schematic (Sheet 1 of 2)
_______________________________________________________________________________________
5
MAX1932 Evaluation Kit Evaluates: MAX1932
J1-1 J1-10 J1-11 J1-12 J1-14 J1-15 J1-16 J1-17
N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C.
J1-6
1 L D2 3 VIN R 2 1 L D3 3 R 2 J2-1 C6 1F 3 2 DVCC VCC 9 C7 0.1F 8 JU2 SCLK JU1
J1-7 J1-8
J1-9
J1-2
CLK_P
CIN
CLK
U2
CS_P J2-2 4 RIN
MAX1841
RST
7
JU3 CS
J1-3 DB-25 MALE RIGHTANGLE CONNECTOR J1-4 J1-5 J1-13 J1-18 J1-19 J1-20 J1-21 J1-22 J1-23 J1-24 J1-25
DIN_P LOOP_BK GND
J2-3
5
DDRV
IO
10
JU4 DIN
J2-4 J2-5
N.C.
1
DATA
GND
6
5-PIN HEADER
Figure 4. MAX1932 EV Kit Schematic (Sheet 2 of 2)
6
_______________________________________________________________________________________
MAX1932 Evaluation Kit Evaluates: MAX1932
Figure 5. MAX1932 EV Kit Component Placement Guide-- Component Side
Figure 6. MAX1932 EV Kit Component Placement Guide-- Solder Side
Figure 7. MAX1932 EV Kit PC Board Layout--Component Side
Figure 8. MAX1932 EV Kit PC Board Layout--Solder Side
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 _____________________ 7 (c) 2002 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.


▲Up To Search▲   

 
Price & Availability of MAX1932EVKIT

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X